فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها




گروه تخصصی











متن کامل


اطلاعات دوره: 
  • سال: 

    2014
  • دوره: 

    5
تعامل: 
  • بازدید: 

    124
  • دانلود: 

    0
چکیده: 

THE INTERACTIONS BETWEEN ProteinS OF A LIVING CELL ARE IMPORTANT FOR ITS BIOLOGICAL FUNCTIONS AND DETERMINING THESE INTERACTIONS PROVIDE VALUABLE INFORMATION ABOUT HOW DO BIOLOGICAL SYSTEMS WORK. REGARDING THE IMPORTANCE OF THE Protein-Protein INTERACTIONS (PPI), IN ONE HAND SEVERAL EXPERIMENTAL TECHNIQUES HAVE BEEN DEVELOPED TO DETECT THE PPIS AND ON THE OTHER HAND, COMPUTATIONAL METHODS TRY TO PREDICT THESE INTERACTIONS VIA MUCH CHEAPER AND FASTER WAYS. THE sequence OF A Protein IS ONE OF THE MOST AVAILABLE INFORMATION AND SO, IT HAS BEEN USED BY SEVERAL COMPUTATIONAL APPROACHES TO PREDICT THE PPIS. IN THIS STUDY, WE USED N-GRAM ENCODING APPROACH TO TRANSFORM THE sequenceS INFORMATION OF ProteinS INTO FEATURE VECTORS. AFTER CONCATENATING THE VECTORS OF ALL Protein PAIRS, A RELAXED VARIABLE KERNEL DENSITY ESTIMATOR (RVKDE) IS USED AS A MACHINE LEARNING TOOL TO PREDICT THE INTERACTIONS. OUR RESULTS SHOW THAT AMONG N-GRAM ENCODING METHODS, 2-GRAM HAS SUPERIOR PERFORMANCE AND IMPROVES THE PREDICTION RESULTS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 124

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
نویسندگان: 

نشریه: 

NUCLEIC ACIDS RESEARCH

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    45
  • شماره: 

    w1
  • صفحات: 

    291-299
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    90
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 90

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نشریه: 

BIOINFORMATICS

اطلاعات دوره: 
  • سال: 

    1999
  • دوره: 

    15
  • شماره: 

    5
  • صفحات: 

    382-390
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    171
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 171

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1991
  • دوره: 

    1
  • شماره: 

    -
  • صفحات: 

    217-236
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    145
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 145

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1403
  • دوره: 

    32
  • شماره: 

    5
  • صفحات: 

    7803-7816
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    86
  • دانلود: 

    6
چکیده: 

1مقدمه: از حدود سه میلیارد جفت باز تشکیل دهنده ژنوم انسان چیزی در حدود یک درصد از فردی به فرد دیگر تنوع ژنتیکی وجود دارد که ویژگی های فیزیکی، روانشناختی و استعداد به بیماری ها را تعیین می کند. در میان انواع تنوع ژنتیکی ، پلی مورفیسم های تک نوکلئوتیدی یکی از مهم ترین تفاوت های ژنتیکی بین دو انسان می باشد. تنوع پلی مورفیسم تک نوکلئوتیدی می تواند در ناحیه پروموتر، اگزون ها، اینترون ها، نواحی غیرقابل ترجمه و سایر نواحی DNA(Deoxyribonucleic acid) قرار بگیرد. در حالی که تنوع در ناحیه اگزون بسته به اینکه ساختار پروتئین را تغییر دهد یا بر کینتیک ترجمه تاثیرگذار باشد می­تواند استعداد به بیماری ها را تغییر دهد. تنوع در ناحیه پ‍‍‍‍‍‍‍روموتر می تواند بر، برهمکنش ژنتیکی و اپی ژنتیکی تاثیرگذار باشد. همچنین تنوع در ناحیه پروموتر می تواند وضعیت متیلاسیون  DNAرا تحت تاثیر قرار دهد. تنوع پلی مورفیک ناحیه اینترون می تواند بر پیرایشmRNA(Messenger ribonucleic acid) و عملکرد عناصر تنظیمی cis تاثیرگذار باشد. تنوع در ناحیه  UTR 5'(Untranslated region 5')سبب تغییر در کارایی ترجمه می شود.در حالی که تغییرUTR 3'(Untranslated region 3') میزان اتصال micro Ribonucleic acid ها به جایگاه خود را تحت تاثیر قرار می دهد. در برخی موارد تنوع درtRNA(Transfer ribonucleic acid)و rRNA(Ribosomal ribonucleic acid) بر عملکرد این عناصرcis تنظیمی تاثیرگذار هستند. نتیجه گیری: از دیدگاه بالینی شناخت این نوع از تنوع ژنتیکی می تواند به روند درمان، مدیریت بیماران و درک پیش آگهی بر اساس این جایگاه ها کمک کند. پزشکی خصوصی یا شخصی سازی شده نیز اساسا بر تنوع ژنتیکی مبتنی است. در این مقاله به مرور انواع تنوع ژنتیکی تک نوکلوتیدی و ارائه مثال هایی از انواع سرطان، بیماری های نرولوژیک و ایمونولوژیک پرداختیم.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 86

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 6 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 11
اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    3
تعامل: 
  • بازدید: 

    339
  • دانلود: 

    0
چکیده: 

IN RECENT YEARS, WE ARE FACED WITH LARGE AMOUNTS OF SPORADIC UNSTRUCTURED DATA ON THE WEB. WITH THE EXPLOSIVE GROWTH OF SUCH DATA, THERE IS A GROWING NEED FOR EFFECTIVE METHODS SUCH AS CLUSTERING TO ANALYZE AND EXTRACT INFORMATION. BIOLOGICAL DATA FORMS AN IMPORTANT PART OF UNSTRUCTURED DATA ON THE WEB. Protein sequence DATABASES ARE CONSIDERED AS A PRIMARY SOURCE OF BIOLOGICAL DATA. CLUSTERING CAN HELP TO ORGANIZE sequenceS INTO HOMOLOGOUS AND FUNCTIONALLY SIMILAR GROUPS AND CAN IMPROVE THE SPEED OF DATA PROCESSING AND ANALYSIS. ProteinS ARE RESPONSIBLE FOR MOST OF THE ACTIVITIES IN CELLS. THE MAJORITY OF ProteinS SHOW THEIR FUNCTION THROUGH INTERACTION WITH OTHER ProteinS. HENCE, PREDICTION OF Protein INTERACTIONS IS AN IMPORTANT RESEARCH AREA IN THE BIOMEDICAL SCIENCES. MOTIFS ARE FRAGMENTS FREQUENTLY OCCURRED IN Protein sequenceS. A WELL-KNOWN METHOD TO SPECIFY THE Protein INTERACTION IS BASED ON MOTIF CLUSTERING. EXISTING WORKS ON MOTIF CLUSTERING METHODS SHARE THE PROBLEM OF LIMITATION IN THE NUMBER OF CLUSTERS. HOWEVER, REGARDING THE VAST AMOUNT OF MOTIFS AND THE NECESSITY OF A LARGE NUMBER OF CLUSTERS, IT SEEMS THAT AN EFFICIENT, SCALABLE AND FAST METHOD IS NECESSARY TO CLUSTER SUCH LARGE NUMBER OF sequenceS. IN THIS PAPER, WE PROPOSE A NOVEL APPROACH TO CLUSTER A LARGE NUMBER OF MOTIFS. OUR APPROACH INCLUDES EXTRACTING MOTIFS WITHIN Protein sequenceS, FEATURE SELECTION, PREPROCESSING, DIMENSION REDUCTION AND UTILIZING BIGFCM (A LARGE-SCALE FUZZY CLUSTERING) ON SEVERAL DISTRIBUTED NODES WITH HADOOP FRAMEWORK TO TAKE THE ADVANTAGE OF MAPREDUCE PROGRAMMING. EXPERIMENTAL RESULTS SHOW VERY GOOD PERFORMANCE OF OUR APPROACH.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 339

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2020
  • دوره: 

    12
  • شماره: 

    43-44
  • صفحات: 

    155-168
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    366
  • دانلود: 

    0
چکیده: 

Since methods for sequencing machine learning sequences were not successful in classifying healthy and cancerous Proteins, it is imperative to find a way to represent these sequences to classify healthy and ill individuals with deep learning approaches. In this study different methods of Protein sequence representation for classification of Protein sequence of healthy individuals and leukemia have been studied. Results showed that conversion of amino acid letters to one-dimensional feature vectors in classification of 2 classes was not successful and only one disease class was detected. By changing the feature vector to colored numbers, the accuracy of the healthy class recognition was slightly improved. The binary Protein sequence representation method was more efficient than the previous methods with the initiative of sequencing the sequences in both one-dimensional and two-dimensional (image by Gabor filtering). Protein sequence representation as binary image was classified by applying Gabor filter with 100% accuracy of the Protein sequence of healthy individuals and 98. 6% Protein sequence of those with leukemia. The findings of this study showed that the representation of Protein sequence as binary image by applying Gabor filter can be used as a new effective method for representation of Protein sequences for classification.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 366

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

GARNIER J. | GIBRAT J.F. | ROBSON B.

نشریه: 

METHODS IN ENZYMOLOGY

اطلاعات دوره: 
  • سال: 

    1996
  • دوره: 

    266
  • شماره: 

    -
  • صفحات: 

    450-553
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    193
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 193

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    16
  • شماره: 

    1
  • صفحات: 

    7-15
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    44
  • دانلود: 

    0
چکیده: 

Background and Aims: Hepatitis C Virus infects more than 170 million people globally despite highly effective direct acting antiviral drugs that greatly improved treatment. The Hepatitis C virus envelope glycoProteins E1 and E2 are the major target to induce immune responses. Since, the different aspects of E1 such as its function and structure are still discussed and require further study, in current study critical regions of E1 were evaluated. Materials and Methods: Mutation diversity in these areas was determined using strains that were available in online databanks and authentic software. Furthermore, RT-PCR for E1 was done on HCV-1a positive samples and the sequences were analyzed. The percentage of substitutions, desired and stable residues for mutation in each position were indicated. Results: The integrated results exhibited bNAb epitope (residues 313-328) which is the most conserved epitope in E1 glycoProtein sequence among all genotypes of HCV. Conclusion: These kinds of studies may shed light on identification more binding sites of virus and broadly cross-neutralization of antibodies. Moreover, it may facilitate the modeling of peptides to new antiviral design or boosting the immune response in multi-epitope vaccine studies.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 44

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 1
نویسندگان: 

نشریه: 

FEBS LETTERS

اطلاعات دوره: 
  • سال: 

    2017
  • دوره: 

    591
  • شماره: 

    2
  • صفحات: 

    406-414
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    57
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 57

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button